认知科学表明,人类会以所见主体的变化分离的事件来感知视频。状态变化触发新事件,是大量冗余信息中最有用的事件之一。但是,先前的研究重点是对细分市场的总体理解,而无需评估内部的细粒度变化。在本文中,我们介绍了一个名为Kinetic-GEB+的新数据集。该数据集由与标题相关的170K边界组成,这些字幕描述了12K视频中通用事件中的状态更改。在这个新数据集中,我们提出了三个任务,支持通过状态变化开发对视频的更细粒度,健壮和类似人类的理解。我们在数据集中评估了许多代表性基线,在该基础上,我们还设计了一种新的TPD(基于时间的成对差异)建模方法,以进行视觉差异并实现显着的性能改进。此外,结果表明,在利用不同粒度,视觉差异的表示以及状态变化的准确定位方面,当前方法仍然存在着巨大的挑战。进一步的分析表明,我们的数据集可以推动开发更强大的方法来了解状态变化,从而提高视频级别的理解。该数据集可从https://github.com/yuxuan-w/geb-plus获得
translated by 谷歌翻译
我们介绍了一个开源深学习库的Pytorchvideo,为各种视频理解任务提供了丰富的模块化,高效,可重复的组件,包括分类,检测,自我监督学习和低级处理。该库涵盖了一系列视频理解工具,包括复制最先进的性能的多模式数据加载,转换和模型。Pytorchvideo进一步支持硬件加速,从而实现移动设备上的实时推断。图书馆基于Pytorch,可以由任何培训框架使用;例如,pytorchlightning,pyslowfast或优雅的愿景。pytorchvideo在https://pytorchvideo.org/提供
translated by 谷歌翻译
Group convolution has been shown to offer great computational savings in various 2D convolutional architectures for image classification. It is natural to ask: 1) if group convolution can help to alleviate the high computational cost of video classification networks; 2) what factors matter the most in 3D group convolutional networks; and 3) what are good computation/accuracy trade-offs with 3D group convolutional networks.This paper studies the effects of different design choices in 3D group convolutional networks for video classification. We empirically demonstrate that the amount of channel interactions plays an important role in the accuracy of 3D group convolutional networks. Our experiments suggest two main findings. First, it is a good practice to factorize 3D convolutions by separating channel interactions and spatiotemporal interactions as this leads to improved accuracy and lower computational cost. Second, 3D channel-separated convolutions provide a form of regularization, yielding lower training accuracy but higher test accuracy compared to 3D convolutions. These two empirical findings lead us to design an architecture -Channel-Separated Convolutional Network (CSN) -which is simple, efficient, yet accurate. On Sports1M, Kinetics, and Something-Something, our CSNs are comparable with or better than the state-of-the-art while being 2-3 times more efficient.
translated by 谷歌翻译
Remote sensing imagery provides comprehensive views of the Earth, where different sensors collect complementary data at different spatial scales. Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a $5.0\%$ non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a $0.9$ mIoU to $3.8$ mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
translated by 谷歌翻译
We address the problem of unsupervised domain adaptation when the source domain differs from the target domain because of a shift in the distribution of a latent subgroup. When this subgroup confounds all observed data, neither covariate shift nor label shift assumptions apply. We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain, and unlabeled data from the target. The identification results are constructive, immediately suggesting an algorithm for estimating the optimal predictor in the target. For continuous observations, when this algorithm becomes impractical, we propose a latent variable model specific to the data generation process at hand. We show how the approach degrades as the size of the shift changes, and verify that it outperforms both covariate and label shift adjustment.
translated by 谷歌翻译
With the rise in high resolution remote sensing technologies there has been an explosion in the amount of data available for forest monitoring, and an accompanying growth in artificial intelligence applications to automatically derive forest properties of interest from these datasets. Many studies use their own data at small spatio-temporal scales, and demonstrate an application of an existing or adapted data science method for a particular task. This approach often involves intensive and time-consuming data collection and processing, but generates results restricted to specific ecosystems and sensor types. There is a lack of widespread acknowledgement of how the types and structures of data used affects performance and accuracy of analysis algorithms. To accelerate progress in the field more efficiently, benchmarking datasets upon which methods can be tested and compared are sorely needed. Here, we discuss how lack of standardisation impacts confidence in estimation of key forest properties, and how considerations of data collection need to be accounted for in assessing method performance. We present pragmatic requirements and considerations for the creation of rigorous, useful benchmarking datasets for forest monitoring applications, and discuss how tools from modern data science can improve use of existing data. We list a set of example large-scale datasets that could contribute to benchmarking, and present a vision for how community-driven, representative benchmarking initiatives could benefit the field.
translated by 谷歌翻译
Massive data corpora like WebText, Wikipedia, Conceptual Captions, WebImageText, and LAION have propelled recent dramatic progress in AI. Large neural models trained on such datasets produce impressive results and top many of today's benchmarks. A notable omission within this family of large-scale datasets is 3D data. Despite considerable interest and potential applications in 3D vision, datasets of high-fidelity 3D models continue to be mid-sized with limited diversity of object categories. Addressing this gap, we present Objaverse 1.0, a large dataset of objects with 800K+ (and growing) 3D models with descriptive captions, tags, and animations. Objaverse improves upon present day 3D repositories in terms of scale, number of categories, and in the visual diversity of instances within a category. We demonstrate the large potential of Objaverse via four diverse applications: training generative 3D models, improving tail category segmentation on the LVIS benchmark, training open-vocabulary object-navigation models for Embodied AI, and creating a new benchmark for robustness analysis of vision models. Objaverse can open new directions for research and enable new applications across the field of AI.
translated by 谷歌翻译
The Graph Protocol indexes historical blockchain transaction data and makes it available for querying. As the protocol is decentralized, there are many independent Indexers that index and compete with each other for serving queries to the Consumers. One dimension along which Indexers compete is pricing. In this paper, we propose a bandit-based algorithm for maximization of Indexers' revenue via Consumer budget discovery. We present the design and the considerations we had to make for a dynamic pricing algorithm being used by multiple agents simultaneously. We discuss the results achieved by our dynamic pricing bandits both in simulation and deployed into production on one of the Indexers operating on Ethereum. We have open-sourced both the simulation framework and tools we created, which other Indexers have since started to adapt into their own workflows.
translated by 谷歌翻译
Sparse matrix representations are ubiquitous in computational science and machine learning, leading to significant reductions in compute time, in comparison to dense representation, for problems that have local connectivity. The adoption of sparse representation in leading ML frameworks such as PyTorch is incomplete, however, with support for both automatic differentiation and GPU acceleration missing. In this work, we present an implementation of a CSR-based sparse matrix wrapper for PyTorch with CUDA acceleration for basic matrix operations, as well as automatic differentiability. We also present several applications of the resulting sparse kernels to optimization problems, demonstrating ease of implementation and performance measurements versus their dense counterparts.
translated by 谷歌翻译
This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges -- summarization, and question answering -- prompt ChatGPT to produce original content (98-99%) from a single text entry and also sequential questions originally posed by Turing in 1950. The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, and overall quality. While Turing's original prose scores at least 14% below the machine-generated output, the question of whether an algorithm displays hints of Turing's truly original thoughts (the "Lovelace 2.0" test) remains unanswered and potentially unanswerable for now.
translated by 谷歌翻译